


S355J2 Material

S355J2 Material

S355J2

G20Mn5+QT Material

No se realizarán rozas en la zonas provistas de armadura.

CARACTERISTICAS COMUNES A TODOS LOS ACEROS

210000 N/mm² MODULO DE ELASTICIDAD 81000 N/mm² 81000 N/mm² 81000 N/mm² MODULO DE RIGIDEZ 7850 kg/m COEFICIENTE DE POISSON v = 0.3 COEFICIENTE DILATACION 1.2×10^{-5} (°C) DENSIDAD NOTAS SOBRE LA EJECUCION a una exposición muy baja.

De acuerdo a lo fijado en dicha normativa y de acuerdo al tipo de acero empleado, deberá suministrarse al acero una protección a efectos de durabilidad igual o equivalente a la que proporciona un galvanizado por inmersión en caliente (UNE-EN-ISO 1461) de espesor 50 micras.

de al menos el 60% en peso, una vez ejecutada la correcta limpieza de la unión. se aplicará una pintura intumescente en espesor adecuado para asegurar una protección contra el fuego equivalente a R30. Los Niveles de Control se justarán a lo prescrito en el Apartado 12 del DB-SE-A Acero.

ESPECIFICACIONES PARA CORDONES DE SOLDADURA ARCO ELECTRICO MANUAL

CTRODOS	Tensión de Rotur	a fu	Alargamiento de Rotura	Resiliencia		
	420 N/mm. ²	22 (mínimo/%)		5,00 kpm (mínimo)		
JECUCION DE CORDON DE SOLI	DURA A TOPE	EJEC	JCION DE CORDON DE S	SOLDURA EN ANGULO		
	45° 30° 20° mm 10 mm 13 mm	62	el til	$e1 > e2 \Rightarrow a > \frac{1}{2} e1$ $e2 > e1 \Rightarrow a > \frac{1}{2} e2$		
SIMBOLOGIA						

cuenta para calcular la resistencia de la unión.

El cordón de soldadura se encuentra del lado de la flecha El cordón de soldadura se encuentra del lado opuesto de la flecha Angulo | A tope en "V" | A tope en Bisel | A tope en Bisel | A tope en Bis \checkmark 2a - Línea de referencia (línea continu INDICACIONES COMPLEMENTARIAS 2b - Línea de identificación (línea discontinua) 3 - Tipo de soldadura

4 - Indicaciones complementarias NOTAS SOBRE LA EJECUCION: - Las características mecánicas de los materiales de aportación serán en todos los casos superiores a las del

- Las calidades de los materiales de aportación ajustadas a la Norma UNE-EN ISO 14555:1999 se considerarán aceptables - En cualquier caso los valores del espesor de garganta cumplirán las limitaciones genéricas establecidas en el Apartado 8.6 del

DB-SE-A y las especificaciones de control señaladas en el Apartado 10.7 del DB-SE-A. DISPOSICIONES CONSTRUCTIVAS: - No se consideran cordones en uniones soldadas donde los espesores de las piezas a unir sean inferiores a 4 mm. Los cordones de las soldaduras en ángulo no podrán tener un espesor de garganta inferior a 3 mm. ni superior al

menor espesor de las - Los cordones de las soldaduras en ángulo cuyas longitudes sean menores de 40 mm. o 6 veces el espesor de garganta, no se tendrán en

- En el detalle de las soldaduras en ángulo se indica la longitud efectiva del cordón (longitud sobre la cual el cordón tiene su espesor de garganta completo). Para cumplirla, puede ser necesario prolongar el cordón rodeando las esquinas, con el mismo una longitud de 2 veces dicho espesor. La longitud efectiva de un cordón de soldadura deberá ser mayor o igual que 4 veces el espesor de

garganta. - Las soldaduras en ángulo entre dos piezas que forman un ángulo β deberán cumplir con la condición de que dicho ángulo esté comprendido entre 60 y 120 grados. En caso contrario:

- Si se cumple que ß > 120° se considerará que no transmiten esfuerzos - Si se cumple que β < 60°: se considerarán como soldaduras a tope con penetración parcial. - En las soldaduras a tope será obligatorio controlar mediante ensayo la penetración total, asegurando la fusión entre el

aportación en todo el espesor de la unión. - Se evitarán en lo posible las configuraciones que induzcan en el desgarro laminar, adoptando las medidas necesarias para minimizar la posibilidad de que se produzca el desgarro en las chapas.

CARACTERISTICAS DE TORNILLOS, TUERCAS Y ARANDELAS
 4.6
 5.6
 6.8
 8.8
 10.9

 240 N/mm.²
 300 N/mm.²
 480 N/mm.²
 640 N/mm.²
 900 N/mm.²
 Tensión de Límite Elástico

Tensión de Rotura 400 N/mm.² | 500 N/mm.² | 600 N/mm.² | 800 N/mm.² | 1000 N/mm.² NOTAS SOBRE LA EJECUCION - Las características y tipología de los tornillos, tuercas y arandelas, se determinarán para cada nudo de unión en los

detalles parciales correspondientes. La designación de los tornillos especificará claramente si se trata de tornillos ordinarios (T), bien de tornillos calibrados (TC) o bien de tornillos de alta resistencia (TR), a continuación el diámetro "d" la caña, el signo "X", la longitud "l" del vástago y el tipo de acero De forma genérica se entenderá por tornillo el conjunto tornillo, tuerca y arandela (simple o doble). - En los tornillos de alta resistencia (TR) utilizados como pretensados se controlará el apriete.

DETERMINACION DE ACCIONES

◆ PESO PROPIO ESTRUCTURA 0,25 kN/m²		Resistencia		Situación persistente o transito				ansitoria			
* PESO PROPIO ESTRUC	IUN	1 0,25 KIN/ITI2 1		i lesistericia			Desfavorable		Favorable		
• CARGAS PERMANENTES (G):					Permanente	$\gamma_{_{\!G}} = 1.$	35	$\gamma_{_{\rm G}} = 0$.80		
Faldón de Cubierta	(0,15 kN/m ²					Variable	$\gamma_{Q} = 1.50$		γ _{Q= 0.00}	
• CARGAS VARIABLES (. J.			Simu	ultanei	dad		ψ_{\circ}	Ψ1		ψ_2
Mantenimiento	ઝ).	0,40 kN	J/m²				Uso	0.70	0.7	0	0.60
Nieve		0,30 kN	J/m^2				Nieve	0.50	0.2	0	0.00
* CARGA TOTAL * Según con	nbinaci	ón de acciones. Art. 4	DB-SE.				Viento	0.60	0.5	0	0.00
 CARGAS CLIMATICAS. 	VIEI	OTV									
Presión Dinámica de Viento	a	Situación		Zona	0.45	HUEC	OS a BARLOVEN	TO HUE	COS a	SOTA	VENTO
Anejo D. Art. D.1 DB-SE-AE	q _b	Vigo		В	0,45	P	RESIÓN . VIII . SU	ICCIÓN PE	RESIÓN . '	1/2	. SUCCIÓN
Coeficiente de Exposición		Grado de Aspereza	do de Aspereza k		z,Z (m)		110 NATO 11				
Anejo D. Art. D.2 DB-SE-AE	Ce	IV	0,22	0,3	15,0		*** ***		***	\ /%	%i⇒
Coeficiente de Presión	Ср	Tabla + Cp	+ Cp	- Cs	- Cs	PRESIÓI	✓ U INTERIOR →III-	VIENTO		NTERIOR	줴그 [
Anejo D. Art. D.3 DB-SE-AE	Ор	D6 G + 0,0	J + 0,2	G - 1,2 H - 0,6	J - 0,6	PHESIOI	→ -	PRESION	7 (

		proyecto	ACONDICIONAMIENTO DEL EDIFICIO SOPI	ORTALES EN EL BERBÉS
Puerto de Vigo		emplazamiento	AVENIDA DA BEIRAMAR / PUERTO PESQU	ERO DE VIGO
-	- Source Vigo	arquitectos autores	MARÍA GONZÁLEZ FERRO JORDI CASTRO ANDRADE	MARÍA GONZÁLEZ FERRO JORDI CASTRO ANDRADE
	Autoridad Portuaria de Vigo	director proyecto	JOSÉ ENRIQUE ESCOLAR PIEDRAS	JOSÉ ENRIQUE ESCOLAR PIEDRAS
plano	ESTRUCTURA EDIFICIO B ENTRAMADO DE CUBIERTA	fecha j	ulio 2017 escala 1/100	nº plano E0

El presente documento es copia de su original del que es el autor el arquitecto firmante. Su utilización total o parcial, así como su reproducción o cesión a terceros, requerirá de la previa autorización expresa de su autor, quedando en todo caso prohibida cualquie Este plano deberá verificarse con los correspondientes de instalaciones y estructuras. Así mismo, el contratista comprobará las dimensiones y niveles indicados en los planos antes de su ejecución, advirtiendo a la dirección facultativa de cualquier diferencia